Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Industrial Textiles ; : 152808372210946-152808372210946, 2022.
Article in English | PMC | ID: covidwho-1799146

ABSTRACT

The sudden outburst of Coronavirus disease 19 or COVID-19 has raised serious awareness about viral contamination on the environment, which is one of the major causes of the disease. Transmission via contaminated surfaces has been recognized as a significant route for spreading the virus. To suppress and control the spread of SARS-CoV-2, potent virucidal finishing agents for decontamination of medical textiles are urgently required. In this study, an environmental-friendly, economical, non-toxic, and practical finishing on medical textiles with potent virucidal activity was proposed with the combined concepts of a new green synthesis of TiO 2 @Ag core-shell nanostructures using ascorbic acid reduction and UV-curing process. In order to evaluate efficiency of virucidal activity, effects of the amount of TiO 2 @Ag NPs and contact time were determined against the coronavirus following ISO 18184:2019 standard. The finishing agent exhibited an excellent 99.9% virucidal efficacy. The stability of virucidal activity and mechanical properties were determined under repeated washing. The finished fabrics had the ability to retain their virucidal activity and tensile strength through 20 washes. The results suggested that the finishing agent had great potential as a potent and non-toxic virucide against the coronavirus for medical textile applications.

2.
PLoS One ; 16(10): e0258245, 2021.
Article in English | MEDLINE | ID: covidwho-1468167

ABSTRACT

Since the innovation of our new half-piece elastometric respirator, this type of filtering facepiece respirator (FFR) has been used widely in Thailand. Decontamination methods including ultraviolet C (UVC) germicidal irradiation and 70% alcohol have been implemented to decontaminate these respirators. We then examined the inactivation potential of different decontamination processes on porcine epidemic diarrhea virus (PEDV) and numerous bacterial strains, most of which were skin-derived. To enable rigorous integrity of the masks after repeated decontamination processes, fit tests by the Bitrex test, tensile strength and elongation at break were also evaluated. Our results showed that UVC irradiation at a dose of 3 J/cm2 can eradicate bacteria after 60 min and viruses after 10 min. No fungi were found on the mask surface before decontamination. The good fit test results, tensile strength and elongation at break were still maintained after multiple cycles of decontamination. No evidence of physical degradation was found by gross visual inspection. Alcohol (70%) is also an easy and effective way to eradicate microorganisms on respirators. As the current pandemic is expected to continue for months to years, the need to supply adequate reserves of personnel protective equipment (PPE) and develop effective PPE reprocessing methods is crucial. Our studies demonstrated that the novel silicone mask can be safely reprocessed and decontaminated for many cycles by UVC irradiation, which will help ameliorate the shortage of important protective devices in the COVID-19 pandemic era.


Subject(s)
COVID-19 , Decontamination/methods , Respiratory Protective Devices , Ultraviolet Rays , Ventilators, Mechanical , Humans , Pandemics , Silicones
SELECTION OF CITATIONS
SEARCH DETAIL